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Gas- Liquid Transition in Charged Fluids 

M. ROVEREt, R .  MINIEROS, M. PARRlNELLOt and M. P. TOSlttj 

(Rrceircvf November 20, 1978) 

The connexion between the equation of state of a classical fluid of non-polarizable ions, the 
character of the screening, and the appearance of long range oscillations in the chargetharge 
radial distribution function is examined. While considerations of stability lead to the usual 
inequalities for the inverse static dielectric function and the compressibility of the charged fluid, 
the square of the inverse screening length k ,  does not need to be positive for thermodynamic 
stability. Through a study of an approximate equation of state for a twocomponent fluid of 
charged hard spheres, the regions of negative and positive k i  in the pressuredensity plane are 
related to a liquid phase and to an ionized-gas phase, respectively. The model fluid displays a 
gas-liquid critical point, above which the transition between the two types of screening is con- 
tinuous. This’behaviour of the charged-hard-spheres fluid is contrasted with the transition of 
a real ionic liquid to the molecular gaseous phase. 

1 INTRODUCTION 

The classical one-component plasma on a uniform neutralizing background 
(OCP) is often taken as a prototype model for understanding the behaviour 
of real charged fluids. Some of the qualitative deficiencies of this model 
(the lack of a d.c. resistivity, for instance) are well known. Further concern 
has arisen from recent computer simulation work’.’ showing that the 
“compressibility” of the OCP becomes negative with increasing plasma 
parameter r (defined as I? = e2/(ak,T) with a = (4nt1/3)-’/~ and n the 
particle density). At approximately the same value of r, oscillations are 
found to appear in the charge-charge radial distribution function gq(r). 
In fact, negative values of the “compressibility” had previously been obtained 
in approximate many-body theories for both the degenerate Fermi plasma 
at low density3 and the OCP at high d e n ~ i t y . ~  

A negative value of the compressibility is commonly associated with a 
mechanical instability of the ~ y s t e m , ~  although a full discussion of stability 
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12 M. ROVERE, 1’1 01. 

conditions for charged fluids seems to be lacking. A misleading feature of 
the OCP model is that its isothermal compressibility is defined6 to coincide, 
apart from a trivial factor, with the square of its inverse screening length k, ,  
at least when the neutralizing background is not endowed with mechanical 
stiffness. One is thus tempted to suggest that the computer simulations of 
the OCP are merely observing a change in the character of the screening, 
from exponential to oscillatory, as r increases, while mechanical stability 
of the model is preserved through the boundary conditions imposed on the 
simulation runs. 

These considerations have prompted us to examine the connexion 
between the equation of state and the character of the screening in a two- 
component charged fluid, where K ,  and /if are naturally distinct quantities. 
We first discuss exhaustively the stability conditions for such a fluid, both 
on a microscopic scale and in the thermodynamic limit. We find in particular 
that a negative value of kf,  but not a negative value of KT, is compatible with 
thermodynamic stability. To illustrate the behaviour of kf in relation to the 
equation of state, we then specialize the discussion to a classical fluid of 
charged hard spheres of equal diameters, adopting the analytic, ’ albeit 
approximate, expressions for its thermodynamic properties derived by 
Waisman and Lebowitz’ in the mean spherical approximation. We feel that 
this should suffice for the qualitative insight that we are seeking at present. 

The main results are briefly summarized as follows. The isotherms of the 
model have the classical van der Waals shape with a liquid-gas critical point, 
in agreement with previous work* on the same model fluid. Below the critical 
pressure, the two phases are characterized by values of ki  of opposite signs, 
that is negative for the high density (liquid) phase and positive for the low 
density (ionized gas) phase. These correspond, respectively, to an oscillatory 
and to an exponential asymptotic screening behaviour. The critical point is 
bracketed between the locus of points in the pressure-density plane where 
kf changes sign and the locus of points where oscillations in g,(r) appear, 
these “transitions” being continuous above the critical pressure. The gaseous 
phase in question is, of course, a fully ionized conducting fluid, although 
screening is strongly local except at the lowest densities, where the Debye- 
Hiickel limit is recovered. Inclusion of electronic deformability would seem 
necessary to allow for the formation of molecular bound states. 

2 STABILITY OF A N  IONIC FLUID AGAINST WEAK 
PERTURBATIONS 

Let us consider first the electric stability of an ionic fluid in a weak external 
Coulomb potential Vc(k, a), at frequencies well below those of electronic 
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GAS-LIQUID TRANSITlON IN CHARGED FLUIDS 13 

excitations. The average dissipation of energy per  cycle is W = [F, . (j)],,” 
where F, is the external force acting on the ionic charges, 

and (j) is the ionic current density, whose longitudinal component follows 
from the continuity equation, 

k .  (j) = Re{o(q(k, w ) )  exp[i(k - r - w t ] } .  (2.2) 
We have taken into account the effects of electronic polarization formally 
through an electronic static dielectric function E , ( & )  which screens the ex- 
ternal field and the fields of ionic fluctuations. The ionic charge density 
(q(k, 0)) induced by the perturbation is thus related to the external potential 
by 

where Xq4(k, w )  is the ionic-charge response function. The Poisson equation 
relates xqq(k, w) to the usual dielectric function E(k, w )  of the system through 

(2.4) 

Using the above equations and averaging over a cycle of the external field, 
we get 

a result which in its latter form is well known6 for a one-component plasma. 
This can also be written 

k 2  
8ne2 

W = - w Im E(k, w) l  v(k, w) I2  

where K(k, w )  = V,(k, w)/E(k, w) is the potential inside the material. 
The function l/~(k, o), being the response to the external perturbation 

which can in principle be varied at will, is necessarily causal and thus obeys 
the Kramers-Kronig relation 
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14 M. ROVERE, er 01. 

From Eq. (2.5) and the inequality W > 0 for electric stability, we get 

For E&) > 0, this inequality is compatible both with ~ ( k ,  0) > E,(&) and 
with ~ ( k ,  0) < 0. O n  the other hand, if E(k, w )  were to satisfy a Kramers- 
Kronig relation analogous to Eq. (2.7), one would obtain from Eq. (2.6) that 
the inequality (2.8) ought to be restricted to ~ ( k ,  0) > ~ , ( k ) .  As pointed out by 
several  author^,^*^*'^ however, c(k, w )  does not necessarily obey the require- 
ments of causality, and examples of charged fluids with E(k, 0) < 0 have 
recently been presented." 

The inequality (2.8) thus expresses the condition for stability of the ionic 
system against a weak electric perturbation. If we notice that it is equivalent 
to the inequality 

-Xq,(k, 0) > 0, (2.9) 

its extension to the full set of stability conditions is immediate: the matrix 
of the negatives of the static response functions (that is, in the classical limit, 
the matrix of the partial structure factors) must be positive definite. 

Instead of proving this statement, as can be done by the same line of argu- 
ment used above to derive EQ. (2.9), let us consider in detail the long wave- 
length limit, which is of special interest for what follows. We can use in this 
limit the standard procedure5 for the derivation of thermodynamic stability 
conditions, which requests that the thermodynamic potential ought to be a 
minimum against small changes of state at constant temperature and 
chemical potentials. That is, considering for simplicity a two-component 
ionic fluid, 

(2.10) 

where be, hs, 6 p  and 6q are the changes in densities of internal energy, 
entropy, mass and charge, and 

(2.1 1)  

with p +  and p-  the chemical potentials of the two components per unit mass. 
Expanding be for small changes of state up to quadratic terms in 6s, 6p and 64, 
we obtain the usual inequalities 

c,>o, K , > O  (2.12) 
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GAS-LIQUID TRANSITION IN CHARGED FLUIDS 

as well as the inequality 

1 1  - + - > o  
kZ kf 

with 

I5 

(2.13) 

(2.14) 

The equivalence between Eq. (2.13) and Eq. (2.9). as well as the identification 
of k: with the square of the inverse screening length, follow from the long- 
wavelength expression '' for the static charge response function, 

lim Xqq(k, 0) = - - E m k 2  (1 + $)-'. 
k - 0  4neZ 

(2.15) 

In the case of a neutral mixture, the term Ilk2 is absent in Eq. (2.13) and the 
fluctuation bq coincides with the concentration fluctuation bc, so that 
Eq. (2.13) becomes the usual inequality (dpldc),., > 0 for stability against 
phase separation. In the charged fluid, on the other hand, the inequality 
(2.13) is always satisfied in the thermodynamic limit (k + 0), irrespectively of 
the sign of ( d p / & ) ,  T .  Obviously, separation of the two ionic components 
is prevented by the Coulomb interactions. We conclude that the "screening 
length" defined by Eq. (2.14) may well become imaginary in a charged fluid. 
This behaviour would correspond to asymptotic oscillations of the screening 
charge density around a point-like impurity of (weak) charge Ze, 

lim (bq(r)) = ""'cos(lk,lr) - (kf < 0) 
r +  w 4nr 

(2.16) 

in place of the exponential decay to which one is accustomed from the low- 
density Debye-Hiickel theory, 

Zkl 
lirn (bq(r)) = - - exp( -k,r) (k: > 0). 
1-00 4nr 

(2.17) 

Notice also that Eq. (2.16), although strictly inapplicable for values of r of 
the order of ionic dimensions, indicates that the first pile-up of screening 
charge occurs at r N n/lk,l rather than on top of the impurity. In an ionic 
liquid at very high densities this distance should correspond to near contact 
between the point-like impurity and its neighbour ions of opposite sign, 
and thus we may expect in this limit kf - - x 2 / R 2 ,  R being of the order of 
the ionic size." 
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16 M ROVERE. cf a/. 

3 SCREENING AND EQUATION OF STATE FOR A 
CHARG ED- H AR D-SPH ERES FLU1 D 

We have seen in the preceding discussion that an imaginary screening length 
does not conflict with stability criteria and is in fact suggested at high densities. 
The OCP simulation work’,’ that we have discussed in the introduction in- 
dicates that this efiect arises at densities considerably lower than those met 
in molten-salt liquids. To explore the behaviour of k: in a two-component 
charged fluid and its relation to the equation of state, we ‘resort in the follow- 
ing to the model of a fluid of charged hard spheres of equal diameters, which 
has been solved in the mean spherical approximation by Waisman and 
Lebowi tz.’ 

The equation of state of this approximate model is given analytically as 

where n is the number of ion pairs per unit volume, q = 3nna3 is the packing 
fraction, cr is the hard-sphere diameter, and x = k,o with k ,  the Debye- 
Huckel inverse screening length, 

Similarly, an analytic expression for kf can be obtained from the low k ex- 
pansion of the charge-charge structure factor S,,(k), defined as 

S J k )  = f[s+ +(k) + S- - ( k )  - 2S+ - ( k ) 1 7  (3.3) 

if we use the fluctuation-dissipation theorem to relate S,,(k) to the response 
function Xqs(k, 0), 

and compare the result of the expansion with Eq. (2.15). The result of this 
lengthy but straightforward calculation is 

(k,O)’ = x’[+ - $X - j$x2 - kx(l + 2 ~ ) ” ~  + 3 1  + 2~)’/’]-’, (3.5) 

with the limiting values k, = k, for x + 0 and kf = - 12/aZ for x + 00. 

The behaviour of kJk ,  as a function of the variable x is reported in Figure 
I .  Starting from the low values of x (that is, low density or high temperature), 
and with reference to Eqs. (2.16) and (2.17), the screening cloud is becoming 
more rapidly localized with increasing x than predicted by the Debye- 
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GAS-LIQUID TRANSITION IN CHARGED FLUlDS 17 

x z  = 3.48 

FIGURE I 
spherical approximation. 

The function kf/kg versus k i d  for a charged-hard-spheres fluid in the mean 

Huckel theory, till k ,  diverges for a critical value x, 2: 1.8. Obviously, in the 
neighbourhood of x, higher order terms in the low k expansion of the 
response function will become important, and Eqs. (2.16) and (2.17) will lose 
their validity. At  larger values of x, screening is oscillatory, with a wavelength 
which is eventually determined only by the ionic size. Typical values of x for 
molten salts near freezing at atmospheric pressure are of the order of 80, much 
larger than x,. 

The two screening regimes that we have just seen to exist in the present 
model fluid are related to an ionized-gas phase at low densities and to a 
liquid phase at high densities. This is borne out in Figure 2, where we report 
the equilibrium curve of the two phases in the pressure-volume plane as well 
as the locus of points (curve K) where k: changes sign. The equilibrium 
curve was determined by the usual Maxwell construction from the isotherms 
calculated from Eq. (3. I), which are seen to have the classical van der Waals 
shape with a critical point. Below the critical pressure, curve K runs within 
the region of densities .that are excluded for a stable homogeneous phase, 
implying that the transition in screening behaviour will be met on crossing 
the interface between the liquid and the ionized gas,.as the density changes 
from its value deep in the liquid to its value in the gas. 
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18 M. ROVERE. cf al. 
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50 100 150 lfe' 200 

FIGURE 2 Isotherms (broken lines) and coexistence curve (full line) of the model. Curves 
K and G give, respectively, the locus of points where kf changes sign and the locus of points 
where oscillations in q,(r)  appear. 

Curve K crosses the equilibrium curve near the critical point of the model: 
we see no basic reason to expect the intersection to occur exactly at  the critical 
point, although the difference may well be within the imprecision brought 
in by the mean spherical approximation. Above the critical pressure, the 
transition between the two screening regimes in the homogeneous fluid is, of 
course, continuous. On the low-density side of curve K, screening is very 
strongly local (k, 9 k,) but still consistent with the usual Debye-Hiickel 
picture of Eq. (2.17), while on the high-density side of curve K a definite 
structuring of the screening cloud into shells of positive and negative ions 
has set in. 

We report in Figure'2 also the locus of points (curve G) where the charge- 
charge radial distribution function g,(r), . , .  

g,W = - ' 1 dk e""[S,(k) - I], (2n)3n (3.6) 

acquires long range oscillations. This function can be represented through a 
sum of exponentials with exponents determined by the poles of the Laplace 
transform' of rgq(r) ,  and its asymptotic behaviour at large distance is 
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GAS-LIQUID TRANSITION IN CHARGED FLUIDS 19 

0.1 0.3 0.5 0.7 0.9 1.1 

FIGURE 3 Negative of the real part (full h e )  and imaginary part (broken line) of the first 
pole in the Laplace transform of rg,(r), versus q = ,[Jm' - I]. 

determined by the pole having a real part which is closest to the imaginary 
axis. In fact, this pole is on the real axis for low values of x, but acquires an 
imaginary part at a critical value x, 'Y 1.2, as shown in Figure 3. This tran- 
sition corresponds to the onset of a structuring of the liquid around any 
given ion into shells of unlike and like ions. As seen in Figure 2, curve G 
lies on the low-density side of curve K, the discrepancy between the two 
curves being associated apparently, with the relevance of higher terms in the 
low4 expansion of S,(k) as kf becomes very large. Taken together, these two 
curves bracket the critical point of the model. Below the intersection with 
the equilibrium curve, curve G runs in the region of excluded densities, 
implying that the transition in behaviour of g,(r) will be met on crossing the 
interface between liquid and gas. The Fowler appr~ximation'~ on the pair 
correlation functions across the interface is thus necessarily inappropriate in 
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20 M. ROVERE. ci 01. 

calculations of surface tension for charged liquids, as discussed exhaustively 
in recent work by Pastor and Goodisman.” 

4 DISCUSSION 

In this last section we wish to address ourselves to three main points, in an 
attempt to explore the relevance of the preceding discussion to the properties 
of the charged-hard-spheres fluid on one side, and to the behaviour of real 
ionic fluids on the other. 

The first question has to do with the accuracy with which the approximate 
treatment of the charged-hard-spheres liquid in the mean spherical approxi- 
mation (MSA) used in the preceding section predicts the location of its 
critical point (because of the MSA, there is no point in asking about critical 
indices). The presence of a critical point in this fluid was first reported by 
Stell et a1’ on the basis of various approximate equations of state, including 
one that had been deduced from a global fit of Monte Carlo simulation data.16 
In the reduced units adopted by these authors, T* = Emkg Tale’, p* = 2 n d  
and P* = ~ ~ P a ~ / e ’ ,  the present calculation yields the critical point at  
T* = 0.079, p* = 0.014 and P* = 9.65 x lo-’. Stell er aL8 report two 
main sets of results, one obtained from the Monte Carlo equation of state 
and from some approximate expansions of the free energy, and the other 
obtained by refining the equation of state to give a better account of the 
second virial coefficient. The first set of results, with which ours should be 
compared, are T* = 0.078 & 5 % ,  p* - 0.005 + 0.02 and P* - (4 + 10) x 
lo-’. Account of the second virial coefficient brings these values to their 
best estimates of T* = 0.085, p* = 0.011 and P* = 31 x lo-’, the main 
effect clearly being a large increase in the critical pressure. We would thus 
conclude that the MSA yields good values of the critical temperature and 
density for the charged-hard-spheres fluid, and yields instead a value of the 
critical pressure that is too low when compared with the best available 
estimates. 

The next question concerns the relevance of the results for a charged-hard- 
spheres fluid to predictions on the behaviour of real ionic fluids, typically 
the molten alkali halides, near and above the critical point. Two features of 
the model are clearly called in question: (1) the infinitely steep hard core 
repulsion, against the soft nature of the Born-Mayer repulsion in the real 
fluid ; (2) the absence of electronic polarizability effects, that would favour 
molecular bound state at low densities and temperatures. Taking NaF as 
typical of alkali halides with nearly equal cation and anion radii, our results 
yield, with (T ‘v 214 and E ,  - 2, T, = 3300 K, pc = 0.06 g cm-’ and P, = 
70 atm. An estimate of the location of the critical point for several alkali 
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GAS-LIQUID TRANSITION IN CHARGED FLUIDS 

halides has been given by Gillan” on the basis of a significant structures 
model, which in essence represents the partition function of the liquid as a 
superposition of partition functions for solid and gas. His values for NaF are 
T,  = 4251 K, p, = 0.213 g cm-3 and P, = 361 atm. The discrepancies 
between the two sets of results are uncomfortably large. 

I t  is possible to correct the MSA results for a finite steepness of the repulsive 
interactions by allowing for a dependence of the ionic diameters on tem- 
perature and density.” While the dependence on density is at present un- 
known, the dependence on temperature at constant pressure has been 
determined” only in a narrow temperature range near freezing, through a 
fit of isothermal compressibility data. Reasonable extrapolations to higher 
temperatures show that this effect has a major influence on the coexistence 
curve and on the location of the critical point. Although we feel unable to 
present quantitative estimates at the present time, it appears that this 
effect could lead to values of the critical temperature, density and pressure for 
NaF that are in the region of Gillan’s estimates reported above. 

Let us, finally, comment briefly on the question of electronic polarizability. 
As we have stressed earlier, the charged-hard-spheres model describes the 
equilibrium between an ionic liquid and an ionized-gas phase, rather than a 
molecular gas phase. Well below the critical pressure or temperature, the 
alkali halide vapour consists of alkali halide molecules, whose binding derives 
to a significant extent” from induced ionic dipoles. Electronic polarization 
is thus very important for the gaseous phase, but not so relevant in the 
liquid phase” where structuring of the liquid into spherical ionic shells 
occurs around each ion. 

The effect will thus be to stabilize the gaseous phase to higher densities, 
shifting the gas side of the equilibrium curve in Figure 2 towards the left 
and leading probably to higher values ofp, and P,. Above but not too far from 
the critical point, the fluid presumably consists of a mixture of bound mol- 
ecules and free ions in varying concentration, and it is interesting to ask 
whether a sudden transition in the structuring of the total charge density 
still occurs in these conditions. This question, as well as a refined study ofthe 
critical parameters and of the behaviour of a real ionic fluid above the 
critical point, ought to be tackled by computer simulation techniques with 
polarizable-ion models. 
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